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A First Order Method for Differential Equations 
of Neutral Type 

By R. N. Castleton and L. J. Grimm* 

Abstract. A first order method is presented for solution of the initial-value problem 
for a differential equation of neutral type with implicit delay in the critical case where the 
time-lag is zero and the method of stepwise integration does not apply. A convergence 
theorem is proved, and numerical examples are given. 

1. Introduction. In this note, we present a first order method for the numerical 
solution of the initial-value problem (IVP) for a neutral-type functional-differential 
equation without previous history: 

(1) x'(t) = f(t, x(t), x(g(t, x(t))), x'(g(t, x(t))), 

(2) x(a) = xo, x'(a) = zo, 

where z0 is a real root of the algebraic equation 

(3) z = f(a, xo, xo, z). 

Here, x(t) is a scalar function to be determined on some finite interval [a, b]. We 
shall make the following assumptions regarding f and g: 

(Hi) f and g are continuous and satisfy uniform Lipschitz conditions of the 
form 

If(t, xI, YI, zI) - f(t, X2, Y2, z2)1 - L{ Ixl - x21 + IYI - Y21} + L, Izi -Z21, 

1g(t, X1) - g(t, X2)I < L Ix1 - X21 

in their respective domains E and E', where 

E = {(t, x, y, z): a < t < b, Ix - xol < c, Iy- xoI < c, IzI < M} 

and E' is the projection of E in the (t, x) space; c, M, L, L,, L, are constants, with 
L, < 1, M is such that sup(t,,,,, z)CE If(t, x, y, z)l < M, and M(b - a) < c. 

(H2) a < g(t, x) < t for (t, x) C E'. 
Our hypotheses, together with additional smoothness and growth conditions 

on f and g, ensure the local existence of a solution of the IVP (1)--(2). Furthermore, 
x(t) is the only solution having a bounded derivative on [a, b]; see [2], [4]. Our result 
extends a method developed by Feldstein [3] for the equation of retarded type 
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X'(t) = f(t, X(t), X(g(t))) 

to the neutral-type equation with implicit delay (1). Other methods for implicit- 
delay equations are given in [1]. 

2. The Algorithm W1. Let y(t) = x(g(t, x(t))); z(t) = x'(g(t, x(t))). Let N be 
a positive integer, and let h = (b - a)/N. For each nonnegative integer n < N, 
let tn = a + nh. Let [s] denote the integer part of s. Define the algorithm 1 as follows: 

(4) n = f(tn, xn, Yn Zn) gt = g(tn, xn) , 

(5) q(n) = [(gn - a)/h] r(n) = (gn - a)/h - q(n), 

(6) Yo = xo, Y. = Xq(n) + hr(n)fq(n), 

(7) Zn = fa(tn) 

(8) Xn+ = Xn + hin- 

Note that condition (H2) implies q(n) _ n, thus, the algorithm is well defined. 
For n = 0, go = a, q(O) = 0, and r(0) = 0. Thus, y) = x, and z0 = f(a, xo, xo, zo). 
Let u0, an approximation of the root zo, be chosen independently of h. It is of interest 
to note that such an approximation does not destroy the order h convergence of the 
algorithm. It is of further interest that (6) may be simplified to yn = Xq(n). The error 
bound established in the convergence theorem for this "simplified" algorithm is 
larger but still of order h, as noted following the proof of convergence of the algo- 
rithm A. The second numerical example of Section 4 demonstrates both the algo- 
rithm 1 and the simplified algorithm. 

If gn = tn for any n, 1 < n < N, then q(n) = n, r(n) = 0, and (7) becomes Zn = 

f(tn, Xn, yn, zr,) which has exactly one root z in the interval [-M, M] under the con- 
ditions (H1)-(H2) together with the smoothness and growth conditions mentioned 
in Section 1. We must in general include a procedure for finding this root, and this 
in turn will affect the error estimate. As before, such an estimate does not destroy 
the order h convergence of the algorithm. For simplicity, we do not take this into 
account, since our aim is to show the convergence of the algorithm A. 

Thus, we shall assume in the convergence proof that (7) will not reduce to Zn = 

f( tn, Xnd yn, z), n > 1. 

3. Convergence. 
THEOREM. Let f and g satisfy (HI1)-(H2) and suppose, in addition, that there 

exists a unique solution x(t) of (1)-(2) with sup I X"(t)| < B. Then, for each tn a 

[a, b], 0 < n < N, 

I x, - x(t)I _ h/L, Izo - Se( ) + B (+I +Li (e -(ba) + 0(h 2) U0 ~2s \i - L, 

where e 

s = L(1 + c) + Lzc1, 
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c, = 1 + MLY, 

c1 = (L(2 + MLJ) + BL,,)(l - L,), 

uo is the approximation to z(, mentioned above, and x,, is given by algorithm A. 
Proof. Let en = Ix, - x(tj); e* = yn - y(t,,)|; e** = Izn - z(t,,)I. From (8) 

and Taylor's formula, we obtain 

(9) en+- en, + h(L(en, + e*) + Lze*) + h2B/2. 

Equation (5) implies that gn = t,(,,) + hr(n), and hence, in a similar manner, we 

have (after replacing ni by (n + 1)) 

(10) en+1 < ML,,e,7+1 + e(l(n+l) 

+ hr(n + 1){ L(e, (n +l) + e*(,l) + Le,*(* +)} + h 2r2( + l)B/2, 

(11) e** < BL,,e,,+7 + 
L(el(,l^ 

) + el*(,,+)) + Le*(*+l,) + hr(n + l)B. 

We then have two cases to consider: 

Case 1. q(n + 1) = n + 1 and r(n + 1) = 0. Under these conditions, (9) is 

unchanged: 

(9a) en+1 < e,(l + hL) + e*hL + el**hL + h2B/2. 

(10) becomes 

(lOa) ee*.l < e,+1(l + ML,) =e+lco. 

And (11) becomes 

e <1 ? (L + BLj)en+1 + 
Le+n 

+ L e *+* 

or 

(lla) e* < (L + BL,, + L(I + ML 
))e,+I = en+1C1 

Define the partial ordering for vectors: v1 = (v', , v) < v2 = (v', , vk) 

if vi < v.,, i = 1, , k. Then, in vector form, (9a), (lOa), and (1 la) become 

Ie + 
ij 

1 + hL hL hLz e,] h/2 

e*+ < (1 + hL)c( hLc( hLc( e* + h B hc,/2 

Le,* L(1 + hL)c, hLcl hLzlj Lel**j Lhc1/2 

which is of the form d,+1 < Aidn + b1. 

Case 2. q(n+ 1) < nandO ? r(n+ 1) < 1. 
Let 

bit 
= max e,, V = max e-, 6** = max e**. I < I <n :s-I !s< n If <, < n 

Then, (9) becomes 

(9b) 6,+, -< 6n(I + hL) + 6*hL + 6**hL. + h 2B/2. 
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And (10) becomes 

n ML963,+1 + an(l + hL) + hLb* + hL,,b** + h2B/2. 

Using (9b), we have 

n*+ <= (O( + hL) + 6*hL + a**hL, + h2B/2)(1 + MLQ) 

or 

(l Ob) ?I+ I < 6n(1 + hL)co + 6*hLco + a**hLco + h2coB/2. 

Finally, (11) becomes 

bn*+*l =< 6n +1BL, + anL + 6 *L + 6 **L, + hB. 

Further, enlarging 6n to 6nn+i and 5* to 6,*+I on the right, and using 1 - L, > 0, 
we find 

- an+t (L + BLOe + a7*+1 L + hB_ 

Using (9b) and (lOb), we have 

L (+ BI L--(,(i + hL) + h*hL + 2**hL + h2B) + hB L2 /\fl ~ ~~ n2/ 1-L 

or 

(lI lb) 6 n*+* _ n(1 + hL)cl + &*hLc1 + a**hLch + h L+ 2 

Then, as a vector system, (9b), (lOb), and (1 Ib) become 

an+i K 1+ hL hL hL, jn h/2 

(12) *+ < (1 + hL)co hLco hL~co V + hB hco/2 

K _ (1 + hL)cl hLcl hL2c_ 1 I** Lhc/2 + 1/(1 - L,) 

which is of the form dn+l < A2dn + b2. Comparing this with the result obtained 
in Case 1, we find that A1 and A2 are identical and that b1 < b2. Thus, any bound 
obtained here in Case 2 for d,+1 will also bound dr,+i in Case 1. 

To complete the proof, we shall use the following lemmas [3] which may be 
verified by induction: 

LEMMA 1. Suppose A is a k X k real matrix and b is a real k-vector. Let dn} 
(n = 0, 1, )satisfy dn+l < Ad, + b. Then 

dn+1 < A' do ? (t A )b. 

LEMMA 2. Let p = (p', , Pk) q = (q1, * , q4. Suppose the k X k matrix 
A has the form A = p7'q. Then 

/k ( n-1 
n 

E1 p q ? A) 
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By Lemma 1, 

$t, - A, do + (i A)b, 

where 

(= K* =Z UOI 
Ceo Izo - Uo I - 

Then, because 

A, = CK (1 + hL, hL, hLz), 

we can make use of Lemma 2 to obtain 

A. = (I + hL + hLc() + hLcj) A., = (I + hs)'' A2. 

Two results follow from this: A"+' = (I + hs)"A2 < e b- ")A2, and 
h) ((1 + hsY" - ) I 

A' = A. , (I + hs)'= A., < (exp(s(b- a))- 1)A2. 

Finally, 

d,< A)I "' Io (i A,)b2 

< 11h z, - uI) Le' (1-0 
Co 

_ _ _ h~~ 

+ {2 - L + (s + ' + )(e() - I)+ B - 

2s I 2~~~~~~~~~~~~~ 
which gives 

e, < 6, _ Z < h {IZI - /1( I L e'( + - (hs + 1 (e -1 +- 

and the theorem follows. 
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For the simplified algorithm, where (6) is replaced by yn = X,(n) the following 
bound is possible: 

d.+1 ? hj fzo uofI L~Ce'b CO 

~~~~~~~~~~~~11 

dB+ 1 + L\ |(ML\ ) (b-a) | CO 
(13) + 2s ( I+ 1 L s ( - Lz- )j? 

F h 
2 

+B hco 

L~ 2 ML 10 

2 1 - Lz_ 
1-L 

and hence 

e,+ h{fzo - uol Les(b-a) 

(2s I - Lz)r s (1 - Lz ))e >-1 2B} 

TABLE I. xn(h) denotes the value of x, for step size h. 

tn x(t,) x.(24) xn(2 6) x.(2 8) xn(2 10) 

0 0 0 0 0 0 
.0625 .0039 0 .0029 .0034 .0039 
.1250 .0158 .0078 .0138 .0153 .0157 
.1875 .0360 .0238 .0329 .0352 .0358 
.2500 .0653 .0484 .0610 .0642 .0650 
.3125 .1048 .0825 .0990 .1032 .1044 
.3750 .1562 .1275 .1485 .1541 .1556 
.4375 .2224 .1853 .2119 .2196 .2217 
.5000 .3078 .2593 .2942 .3043 .3069 
.5625 .4206 .3547 .4026 .4159 .4194 
.6250 .5771 .4856 .5518 .5705 .5754 
.6875 .8185 .6707 .7778 .8080 .8159 
.7500 1.3244 .9860 1.2205 1.2968 1.3174 
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TABLE II. x(1)(h) denotes the value of x, for step size h by algorithm 
W; x'(h) denotes the value of x, for step size h by the simplified 

algorithm. 

tn X(tj) X( 1) (2 -2) x(i2 ) (2 -2) X' 1) (2 -4) X7,, (2 4) 

.25 .2474 .2500 .2500 .2483 .2478 

.50 .4794 .4930 .4892 .4838 .4759 

.75 .6816 .7180 .6866 .6942 .6739 
1.00 .8414 .9228 .8569 .8697 .8273 

tn X(tn) X(1) (2-8) x(2) (2-8) n1 .(2 2) X(2 (2- 1) 

.25 .2474 .2475 .2471 .2474 .2474 

.50 .4794 .4797 .4787 .4794 .4794 

.75 .6816 .6825 .6802 .6817 .6815 
1.00 .8414 .8435 .8390 .8416 .8413 

4. Examples. (a) We solve the IVP 

x'(t) = + l + tan 2t + 2 tan-' z 

(zo = 0, x0 = 0, z = x'(g(t, x(t))) _ x'(tx2(t)/(1 + x2(t)))) on the interval [0, .75]. 
The existence and uniqueness of the solution is guaranteed by the results of [2] men- 
tioned earlier. The only solution is x(t) = -- log cos 2t. 

The results of the computation by algorithm f are given in Table I. 
(b) Consider the IVP 

x'(t) = cos t(1 + y) + xz - sin(t(1 + sin2 t)), 

with y = x(tx2(t)), z = x'(tx2(t)), z0 = 1, xo = 0, on the interval [0, 1]. As in example 
(a), existence and uniqueness of the solution are guaranteed by the results of [2]. 
Here, the solution is x(t) = sin t. 

The results of the computation by the algorithm f and by the simplified algorithm 
are given in Table II. 
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