A First Order Method for Differential Equations of Neutral Type

By R. N. Castleton and L. J. Grimm*

Abstract. A first order method is presented for solution of the initial-value problem for a differential equation of neutral type with implicit delay in the critical case where the time-lag is zero and the method of stepwise integration does not apply. A convergence theorem is proved, and numerical examples are given.

1. Introduction. In this note, we present a first order method for the numerical solution of the initial-value problem (IVP) for a neutral-type functional-differential equation without previous history:

(1)
$$x'(t) = f(t, x(t), x(g(t, x(t))), x'(g(t, x(t)))),$$

(2)
$$x(a) = x_0, \quad x'(a) = z_0,$$

where z_0 is a real root of the algebraic equation

(3)
$$z = f(a, x_0, x_0, z).$$

Here, x(t) is a scalar function to be determined on some finite interval [a, b]. We shall make the following assumptions regarding f and g:

(H1) f and g are continuous and satisfy uniform Lipschitz conditions of the form

$$|f(t, x_1, y_1, z_1) - f(t, x_2, y_2, z_2)| \leq L\{|x_1 - x_2| + |y_1 - y_2|\} + L_z |z_1 - z_2|,$$
$$|g(t, x_1) - g(t, x_2)| \leq L_g |x_1 - x_2|$$

in their respective domains E and E', where

$$E = \{(t, x, y, z): a \leq t \leq b, |x - x_0| \leq c, |y - x_0| \leq c, |z| \leq M\}$$

and E' is the projection of E in the (t, x) space; c, M, L, L_a , L_z are constants, with $L_z < 1$, M is such that $\sup_{(t, x, y, z) \in E} |f(t, x, y, z)| < M$, and M(b - a) < c.

(H2) $a \leq g(t, x) \leq t$ for $(t, x) \in E'$.

Our hypotheses, together with additional smoothness and growth conditions on f and g, ensure the local existence of a solution of the IVP (1)-(2). Furthermore, x(t) is the only solution having a bounded derivative on [a, b]; see [2], [4]. Our result extends a method developed by Feldstein [3] for the equation of retarded type

Copyright © 1973, American Mathematical Society

Received August 7, 1970.

AMS (MOS) subject classifications (1970). Primary 34K99; Secondary 65L05.

Key words and phrases. Equations of neutral type, functional-differential equations, implicitdelay equations, numerical methods.

^{*} Research of second author supported by National Science Foundation.

$$x'(t) = f(t, x(t), x(g(t)))$$

to the neutral-type equation with implicit delay (1). Other methods for implicitdelay equations are given in [1].

2. The Algorithm \mathfrak{A} . Let y(t) = x(g(t, x(t))); z(t) = x'(g(t, x(t))). Let N be a positive integer, and let h = (b - a)/N. For each nonnegative integer $n \leq N$, let $t_n = a + nh$. Let [s] denote the integer part of s. Define the algorithm \mathfrak{A} as follows:

(4)
$$f_n = f(t_n, x_n, y_n, z_n), \quad g_n = g(t_n, x_n),$$

(5) $q(n) = [(g_n - a)/h], \quad r(n) = (g_n - a)/h - q(n),$

(6) $y_0 = x_0, \qquad y_n = x_{q(n)} + hr(n)f_{q(n)},$

 $(7) z_n = f_{q(n)},$

(8)
$$x_{n+1} = x_n + hf_n$$
.

Note that condition (H2) implies $q(n) \leq n$, thus, the algorithm is well defined. For n = 0, $g_0 = a$, q(0) = 0, and r(0) = 0. Thus, $y_0 = x_0$ and $z_0 = f(a, x_0, x_0, z_0)$. Let u_0 , an approximation of the root z_0 , be chosen independently of h. It is of interest to note that such an approximation does not destroy the order h convergence of the algorithm. It is of further interest that (6) may be simplified to $y_n = x_{q(n)}$. The error bound established in the convergence theorem for this "simplified" algorithm is larger but still of order h, as noted following the proof of convergence of the algorithm \mathfrak{A} . The second numerical example of Section 4 demonstrates both the algorithm \mathfrak{A} and the simplified algorithm.

If $g_n = t_n$ for any $n, 1 \le n \le N$, then q(n) = n, r(n) = 0, and (7) becomes $z_n = f(t_n, x_n, y_n, z_n)$ which has exactly one root z in the interval [-M, M] under the conditions (H1)–(H2) together with the smoothness and growth conditions mentioned in Section 1. We must in general include a procedure for finding this root, and this in turn will affect the error estimate. As before, such an estimate does not destroy the order h convergence of the algorithm. For simplicity, we do not take this into account, since our aim is to show the convergence of the algorithm \mathfrak{A} .

Thus, we shall assume in the convergence proof that (7) will not reduce to $z_n = f(t_n, x_n, y_n, z_n), n \ge 1$.

3. Convergence.

THEOREM. Let f and g satisfy (H1)–(H2) and suppose, in addition, that there exists a unique solution x(t) of (1)–(2) with $\sup_{\{a, b\}} |x''(t)| \leq B$. Then, for each $t_n \in [a, b], 0 < n \leq N$,

$$|x_n - x(t_n)| \leq h \left\{ L_z |z_0 - u_0| e^{s(b-a)} + \frac{B}{2s} \left(\frac{1 + L_z}{1 - L_z} \right) (e^{s(b-a)} - 1) \right\} + O(h^2)$$

where

$$s = L(1 + c_0) + L_z c_1,$$

572

$$c_0 = 1 + ML_g,$$

 $c_1 = (L(2 + ML_g) + BL_g)/(1 - L_z)$

 u_0 is the approximation to z_0 mentioned above, and x_n is given by algorithm \mathfrak{A} .

Proof. Let $e_n = |x_n - x(t_n)|$; $e_n^* = |y_n - y(t_n)|$; $e_n^{**} = |z_n - z(t_n)|$. From (8) and Taylor's formula, we obtain

(9)
$$e_{n+1} \leq e_n + h(L(e_n + e_n^*) + L_z e_n^{**}) + h^2 B/2$$

Equation (5) implies that $g_n = t_{q(n)} + hr(n)$, and hence, in a similar manner, we have (after replacing n by (n + 1))

(10)
$$e_{n+1}^* \leq ML_q e_{n+1} + e_{q(n+1)} + hr(n+1) \{ L(e_{q(n+1)} + e_{q(n+1)}^* + L_z e_{q(n+1)}^{**} \} + h^2 r^2 (n+1) B/2,$$
(11)
$$e_{n+1}^{**} \leq BL_q e_{n+1} + L(e_{q(n+1)} + e_{q(n+1)}^* + L_z e_{q(n+1)}^{**} \} + h^2 r^2 (n+1) B/2,$$

(11)
$$e_{n+1}^{**} \leq BL_y e_{n+1} + L(e_{q(n+1)} + e_{q(n+1)}^*) + L_z e_{q(n+1)}^{**} + hr(n+1)B.$$

We then have two cases to consider:

Case 1. q(n + 1) = n + 1 and r(n + 1) = 0. Under these conditions, (9) is unchanged:

(9a)
$$e_{n+1} \leq e_n(1 + hL) + e_n^* hL + e_n^* hL_z + h^2 B/2.$$

(10) becomes

(10a)
$$e_{n+1}^* \leq e_{n+1}(1 + ML_g) = e_{n+1}c_0.$$

And (11) becomes

$$e_{n+1}^{**} \leq (L + BL_g)e_{n+1} + Le_{n+1}^* + L_z e_{n+1}^{**}$$

or

(11a)
$$e_{n+1}^{**} \leq \left(\frac{L+BL_{g}+L(1+ML_{g})}{1-L_{z}}\right)e_{n+1} = e_{n+1}c_{1}.$$

Define the partial ordering for vectors: $v_1 = (v_1^1, \dots, v_1^k) \leq v_2 = (v_2^1, \dots, v_2^k)$ if $v_1' \leq v_2'$, $i = 1, \dots, k$. Then, in vector form, (9a), (10a), and (11a) become

$$\begin{bmatrix} e_{n+1} \\ e_{n+1}^{*} \\ e_{n+1}^{*} \end{bmatrix} \leq \begin{bmatrix} 1 + hL & hL & hL_{z} \\ (1 + hL)c_{0} & hLc_{0} & hL_{z}c_{0} \\ (1 + hL)c_{1} & hLc_{1} & hL_{z}c_{1} \end{bmatrix} \begin{bmatrix} e_{n} \\ e_{n}^{*} \\ e_{n}^{*} \end{bmatrix} + hB \begin{bmatrix} h/2 \\ hc_{0}/2 \\ hc_{1}/2 \end{bmatrix}$$

which is of the form $d_{n+1} \leq A_1 d_n + b_1$.

Case 2. $q(n + 1) \leq n$ and $0 \leq r(n + 1) < 1$. Let

$$\delta_n = \max_{1 \leq i \leq n} e_i, \qquad \delta_n^* = \max_{1 \leq i \leq n} e_i^*, \qquad \delta_n^{**} = \max_{1 \leq i \leq n} e_i^{**}$$

•

Then, (9) becomes

(9b)
$$\delta_{n+1} \leq \delta_n(1+hL) + \delta_n^*hL + \delta_n^**hL_z + h^2B/2.$$

And (10) becomes

$$\delta_{n+1}^* \leq ML_g \delta_{n+1} + \delta_n (1+hL) + hL \delta_n^* + hL_z \delta_n^{**} + h^2 B/2.$$

Using (9b), we have

$$\delta_{n+1}^* \leq (\delta_n(1 + hL) + \delta_n^* hL + \delta_n^* hL_z + h^2 B/2)(1 + ML_g)$$

or

(10b)
$$\delta_{n+1}^* \leq \delta_n (1 + hL) c_0 + \delta_n^* hL c_0 + \delta_n^* hL_z c_0 + h^2 c_0 B/2.$$

Finally, (11) becomes

$$\delta_{n+1}^{**} \leq \delta_{n+1}BL_g + \delta_nL + \delta_n^*L + \delta_n^{**}L_z + hB_z$$

Further, enlarging δ_n to δ_{n+1} and δ_n^* to δ_{n+1}^* on the right, and using $1 - L_z > 0$, we find

$$\delta_{n+1}^{**} \leq \delta_{n+1} \left(\frac{L+BL_g}{1-L_z} \right) + \delta_{n+1}^{*} \frac{L}{1-L_z} + \frac{hB}{1-L_z}.$$

Using (9b) and (10b), we have

$$\delta_{n+1}^{**} \leq \left(\frac{L + BL_g + Lc_0}{1 - L_z}\right) \left(\delta_n(1 + hL) + \delta_n^* hL + \delta_n^* hL_z + \frac{h^2 B}{2}\right) + \frac{hB}{1 - L_z}$$

or

(11b)
$$\delta_{n+1}^{**} \leq \delta_n(1+hL)c_1 + \delta_n^*hLc_1 + \delta_n^{**}hL_zc_1 + \frac{hB}{1-L_z} + \frac{h^2c_1B}{2}$$
.

Then, as a vector system, (9b), (10b), and (11b) become

(12)
$$\begin{bmatrix} \delta_{n+1} \\ \delta_{n+1}^* \\ \delta_{n+1}^{**} \end{bmatrix} \leq \begin{bmatrix} 1+hL & hL & hL_z \\ (1+hL)c_0 & hLc_0 & hL_zc_0 \\ (1+hL)c_1 & hLc_1 & hL_zc_1 \end{bmatrix} \begin{bmatrix} \delta_n \\ \delta_n^* \\ \delta_n^* \end{bmatrix} + hB \begin{bmatrix} h/2 \\ hc_0/2 \\ hc_1/2 + 1/(1-L_z) \end{bmatrix}$$

which is of the form $d_{n+1} \leq A_2 d_n + b_2$. Comparing this with the result obtained in Case 1, we find that A_1 and A_2 are identical and that $b_1 \leq b_2$. Thus, any bound obtained here in Case 2 for d_{n+1} will also bound d_{n+1} in Case 1.

To complete the proof, we shall use the following lemmas [3] which may be verified by induction:

LEMMA 1. Suppose A is a $k \times k$ real matrix and b is a real k-vector. Let $\{d_n\}$ $(n = 0, 1, \dots)$ satisfy $d_{n+1} \leq Ad_n + b$. Then

$$d_{n+1} \leq A^{n+1}d_0 + \left(\sum_{i=0}^n A^i\right)b.$$

LEMMA 2. Let $p = (p_1, \dots, p_k)$, $q = (q_1, \dots, q_k)$. Suppose the $k \times k$ matrix A has the form $A = p^T q$. Then

$$A^{n} = \left(\sum_{i=1}^{k} p_{i} q_{i}\right)^{n-1} A.$$

574

By Lemma 1,

$$d_{n+1} \leq A_2^{n+1} d_0 + \left(\sum_{i=0}^n A_2^i\right) b_2,$$

where

$$d_0 = \begin{bmatrix} e_0 \\ e_0^* \\ e_0^{**} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ |z_0 - u_0| \end{bmatrix}.$$

Then, because

$$A_2 = \begin{bmatrix} 1 \\ c_0 \\ c_1 \end{bmatrix} (1 + hL, hL, hL, hL_z),$$

we can make use of Lemma 2 to obtain

$$A'_{2} = (1 + hL + hLc_{0} + hL_{2}c_{1})^{i-1}A_{2} = (1 + hs)^{i-1}A_{2}.$$

Two results follow from this: $A_2^{n+1} = (1 + hs)^n A_2 \leq e^{s(b-a)} A_2$, and

$$\sum_{i=1}^{n} A_{2}^{i} = A_{2} \sum_{i=1}^{n} (1 + hs)^{i-1} = \frac{((1 + hs)^{n} - 1)}{hs} A_{2} \leq \frac{1}{hs} (\exp(s(b - a)) - 1) A_{2}.$$

Finally,

$$d_{n+1} \leq A_{2}^{n+1}d_{0} + \left(\sum_{i=0}^{n} A_{2}^{i}\right)b_{2}$$

$$\leq h \begin{cases} |z_{0} - u_{0}| \ L_{z}e^{s(b-a)} \begin{bmatrix} 1 \\ c_{0} \\ c_{1} \end{bmatrix} \\ + \frac{B}{2s}\left(hs + \frac{1+L_{z}}{1-L_{z}}\right)(e^{s(b-a)} - 1) \begin{bmatrix} 1 \\ c_{0} \\ c_{1} \end{bmatrix} + B \begin{bmatrix} \frac{h}{2} \\ \frac{hc_{0}}{2} \\ \frac{hc_{1}}{2} + \frac{1}{1-L_{z}} \end{bmatrix} \end{cases}$$

which gives

$$e_{n+1} \leq \delta_{n+1} \leq h \left\{ |z_0 - u_0| \ L_2 e^{s(h-a)} + \frac{B}{2s} \left(hs + \frac{1+L_2}{1-L_2} \right) (e^{s(h-a)} - 1) + \frac{hB}{2} \right\}$$

and the theorem follows.

For the simplified algorithm, where (6) is replaced by $y_n = x_{q(n)}$ the following bound is possible:

$$d_{n+1} \leq h \begin{cases} |z_0 - u_0| \ L_z e^{s(b-a)} \begin{bmatrix} 1 \\ c_0 \\ c_1 \end{bmatrix} \\ + \left(\frac{B}{2s} \left(hs + \frac{1+L_z}{1-L_z} \right) + \frac{1}{s} \left(\frac{ML}{1-L_z} \right) \right) (e^{s(b-a)} - 1) \begin{bmatrix} 1 \\ c_0 \\ c_1 \end{bmatrix} \\ + B \begin{bmatrix} \frac{h}{2} \\ \frac{hc_0}{2} \\ \frac{hc_1}{2} + \frac{1}{1-L_z} \end{bmatrix} + \begin{bmatrix} 0 \\ M \\ \frac{ML}{1-L_z} \end{bmatrix}$$

and hence

$$e_{n+1} \leq h \Biggl\{ |z_0 - u_0| \ L_z e^{s(b-a)} + \left(\frac{B}{2s} \left(hs + \frac{1+L_z}{1-L_z} \right) + \frac{1}{s} \left(\frac{ML}{1-L_z} \right) \right) (e^{s(b-a)} - 1) + \frac{hB}{2} \Biggr\}.$$

TABLE I. $x_n(h)$ denotes the value of x_n for step size h.

t _n	$x(t_n)$	$x_n(2^{-4})$	$x_n(2^{-6})$	$x_n(2^{-8})$	$x_n(2^{-10})$
0	0	0	0	0	0
. 0625	.0039	0	.0029	. 0034	. 0039
. 1250	.0158	. 0078	. 0138	. 0153	. 0157
. 1875	. 0360	. 0238	. 0329	. 0352	. 0358
. 2500	. 0653	. 0484	. 0610	. 0642	. 0650
. 3125	. 1048	. 0825	. 0990	. 1032	. 1044
. 3750	. 1562	. 1275	. 1485	. 1541	. 1556
. 4375	. 2224	. 1853	. 2119	. 2196	. 2217
. 5000	. 3078	. 2593	. 2942	. 3043	. 3069
. 5625	. 4206	. 3547	. 4026	. 4159	. 4194
. 6250	. 5771	. 4856	. 5518	. 5705	. 5754
. 6875	. 8185	. 6707	. 7778	. 8080	. 8159
. 7500	1.3244	. 9860	1.2205	1.2968	1.3174

$x(t_n)$	$x_n^{(1)}(2^{-2})$	$x_n^{(2)}(2^{-2})$	$x_n^{(1)}(2^{-4})$	$x_n^{(2)}(2^{-4})$
. 2474	. 2500	. 2500	. 2483	. 2478
. 4794	. 4930	. 4892	. 4838	. 4759
. 6816	. 7180	. 6866	. 6942	. 6739
. 8414	. 9228	. 8569	. 8697	. 8273
$x(t_n)$	$x_{r}^{(1)}(2^{-8})$	$x_{n}^{(2)}(2^{-8})$	$x_{n}^{(1)}(2^{-12})$	$x_{n}^{(2)}(2^{-12})$
. 2474		. 2471	. 2474	. 2474
. 4794	. 4797	. 4787	. 4794	. 4794
. 6816	. 6825	. 6802	. 6817	. 6815
. 8414	. 8435	. 8390	. 8416	. 8413
	$\begin{array}{c} x(t_n) \\ \hline \\ 2474 \\ 4794 \\ 6816 \\ 8414 \\ x(t_n) \\ 2474 \\ 4794 \\ 6816 \\ 8414 \end{array}$	$x(t_n)$ $x_n^{(1)}(2^{-2})$. 2474. 2500. 4794. 4930. 6816. 7180. 8414. 9228 $x(t_n)$ $x_n^{(1)}(2^{-8})$. 2474. 2475. 4794. 4797. 6816. 6825. 8414. 8435	$x(t_n)$ $x_n^{(1)}(2^{-2})$ $x_n^{(2)}(2^{-2})$. 2474. 2500. 2500. 4794. 4930. 4892. 6816. 7180. 6866. 8414. 9228. 8569 $x(t_n)$ $x_n^{(1)}(2^{-8})$ $x_n^{(2)}(2^{-8})$. 2474. 2475. 2471. 4794. 4797. 4787. 6816. 6825. 6802. 8414. 8435. 8390	$x(t_n)$ $x_n^{(1)}(2^{-2})$ $x_n^{(2)}(2^{-2})$ $x_n^{(1)}(2^{-4})$. 2474. 2500. 2500. 2483. 4794. 4930. 4892. 4838. 6816. 7180. 6866. 6942. 8414. 9228. 8569. 8697 $x(t_n)$ $x_n^{(1)}(2^{-8})$ $x_n^{(2)}(2^{-8})$ $x_n^{(1)}(2^{-12})$. 2474. 2475. 2471. 2474. 4794. 4797. 4787. 4794. 6816. 6825. 6802. 6817. 8414. 8435. 8390. 8416

TABLE II. $x_n^{(1)}(h)$ denotes the value of x_n for step size h by algorithm \mathfrak{A} ; $x_n^{(2)}(h)$ denotes the value of x_n for step size h by the simplified algorithm.

4. Examples. (a) We solve the IVP

$$x'(t) = \frac{-4tx^2(t)}{4 + \log^2 \cos t} + \tan 2t + \frac{1}{2} \tan^{-1} z$$

 $(z_0 = 0, x_0 = 0, z = x'(g(t, x(t))) = x'(tx^2(t)/(1 + x^2(t))))$ on the interval [0, .75]. The existence and uniqueness of the solution is guaranteed by the results of [2] mentioned earlier. The only solution is $x(t) = -\frac{1}{2} \log \cos 2t$.

The results of the computation by algorithm a re given in Table I.

(b) Consider the IVP

 $x'(t) = \cos t(1 + y) + xz - \sin(t(1 + \sin^2 t)),$

with $y = x(tx^{2}(t)), z = x'(tx^{2}(t)), z_{0} = 1, x_{0} = 0$, on the interval [0, 1]. As in example (a), existence and uniqueness of the solution are guaranteed by the results of [2]. Here, the solution is $x(t) = \sin t$.

The results of the computation by the algorithm \mathfrak{A} and by the simplified algorithm are given in Table II.

Computation Division Lawrence Livermore Laboratory Livermore, California 94551

Department of Mathematics University of Missouri, Rolla Rolla, Missouri 65401

^{1.} R. N. CASTLETON, Some Numerical Methods for Differential Equations with Deviat-ing Arguments, M.S. Thesis, University of Utah, 1970. 2. R. N. CASTLETON & L. J. GRIMM, "Local existence and uniqueness for neutral func-tional equations," (In preparation.)

^{3.} M. A. FELDSTEIN, Discretization Methods for Retarded Ordinary Differential Equations, Ph.D. Thesis, University of California, Los Angeles, Calif., 1964.

^{4.} L. J. GRIMM, "Existence and continuous dependence for a class of nonlinear neutral-differential equations," *Proc. Amer. Math. Soc.*, v. 29, 1971, 467–473. MR 44 #4324.